"Mon ordinateur m'indique que $\\pi$ vaut \\textit{approximativement}"
"## En demandant à la lib maths\n",
"\n",
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
]
},
{
...
...
@@ -43,14 +38,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode des aiguilles de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la \\textbf{méthode} des \\color{blue} aiguilles de Buffon\\color{black}, on obtiendrait comme \\textbf{approximation} :"
"## En utilisant la méthode des aiguilles de Buffon\n",
"\n",
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
]
},
{
...
...
@@ -82,14 +72,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"fréquentiel\" de surface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi /4$ (voir \\color{blue} méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :"
"## Avec un argument \"fréquentiel\" de surface\n",
"\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi /4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"