Update

parent 819d225e
...@@ -9,7 +9,92 @@ ...@@ -9,7 +9,92 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# **1 A propos du calcul de $\\pi$**" "# **A propos du calcul de $\\pi$**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## **En demandant à la lib maths**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import pi\n",
"print (pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## **En utilisant la méthode des aiguilles de Buffon**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np \n",
"np.random.seed(seed=42) \n",
"N = 10000 \n",
"x = np.random.uniform(size=N,low=0,high=1)\n",
"theta = np.random.uniform(size=N,low=0,high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## **Avec un argument \"fréquentiel\" de surface**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon,une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si *X $\\sim$ U(0,1)* et *Y $\\sim$ U(0,1)* alors P[X^2 + Y^2 \\leq 1] = \\frac{pi}{4}"
] ]
} }
], ],
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment