Modificaciones menores

parent ca6aa1d0
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
"hidePrompt": false "hidePrompt": false
}, },
"source": [ "source": [
"## 1. On the computation of $\\pi$\n", "## 1 On the computation of $\\pi$\n",
"\n", "\n",
"### 1.1 Asking the maths library\n", "### 1.1 Asking the maths library\n",
"\n", "\n",
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
} }
], ],
"source": [ "source": [
"from math import*\n", "from math import *\n",
"print(pi)" "print(pi)"
] ]
}, },
...@@ -74,7 +74,7 @@ ...@@ -74,7 +74,7 @@
"source": [ "source": [
"### 1.3 Using a surface fraction argument\n", "### 1.3 Using a surface fraction argument\n",
"\n", "\n",
"A method that is easier to understand and does not make use of thesin function is based on thefact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\"](https://en.wikipedia.org/wiki/Monte_Carlo_method) [on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach:" "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
...@@ -105,6 +105,7 @@ ...@@ -105,6 +105,7 @@
"y=np.random.uniform(size=N, low=0, high=1)\n", "y=np.random.uniform(size=N, low=0, high=1)\n",
"accept=(x*x+y*y)<=1\n", "accept=(x*x+y*y)<=1\n",
"reject=np.logical_not(accept)\n", "reject=np.logical_not(accept)\n",
"\n",
"fig, ax=plt.subplots(1)\n", "fig, ax=plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
...@@ -115,7 +116,7 @@ ...@@ -115,7 +116,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting howmany times, on average, $X^2 + Y^2$ is smaller than 1:" "| It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment