Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
6f892419cc99326ee525ed439d8ff5df
mooc-rr
Commits
77f1ee7f
Commit
77f1ee7f
authored
Feb 27, 2021
by
6f892419cc99326ee525ed439d8ff5df
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
toy-notbook3
parent
de94e186
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
3 deletions
+25
-3
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+25
-3
No files found.
module2/exo1/toy_notebook_fr.ipynb
View file @
77f1ee7f
...
@@ -10,12 +10,34 @@
...
@@ -10,12 +10,34 @@
"\n",
"\n",
"## March 28, 2019\n",
"## March 28, 2019\n",
"\n",
"\n",
"### **1 À propos du calcul de* $\\pi$\n",
"### **1 À propos du calcul de*
*
$\\pi$\n",
"\n",
"\n",
"#### **1.1 En demandant à la lib maths\n",
"#### **1.1 En demandant à la lib maths
**
\n",
"\n",
"\n",
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement\n",
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement\n",
"\n"
"\n",
"In [1]: >from math import *\n",
" >print (pi)\n",
" \n",
" 3.141592653589793\n",
" \n",
"\n",
"#### **1.2 En utilisant la méthode des aiguilles de Buffon**\n",
"\n",
"Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation**\n",
"\n",
"In [2]: >import numpy as np\n",
" >np.random.seed(seed=42)\n",
" >N = 10000\n",
" >x = np.random.uniform(size=N, low=0, high=pi/2)\n",
" >2/(sum((x+np.sin(theta))>1)/N)\n",
" \n",
"Out[2]: 3.1289111389236548\n",
"\n",
"#### **1.3 Avec un argument \"fréquentiel\" de surface\n",
"\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction\n",
"sinus se base sur le fait que si *X* $\\sim$ *U*(0,1) alors *P*[$X^2$ + $Y^2$ ≤ 1] = $^\\pi/_4$ (voir)"
]
]
}
}
],
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment