Minor corrections

parent 7c3ac62f
...@@ -4,21 +4,15 @@ ...@@ -4,21 +4,15 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 1 On the computation of $\\pi$" "# On the computation of $\\pi$"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## 1.1 Asking the maths library" "## Asking the maths library\n",
] "My computer tells me that $\\pi$ is *approximatively*"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"My computer tells me that $\\pi$ is approximatively"
] ]
}, },
{ {
...@@ -43,14 +37,8 @@ ...@@ -43,14 +37,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## 1.2 Buffon's needle" "## Buffon's needle\n",
] "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
] ]
}, },
{ {
...@@ -82,14 +70,8 @@ ...@@ -82,14 +70,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## 1.3 Using a surface fraction argument" "## Using a surface fraction argument\n",
] "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then P$[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$, then P$[X^2 +Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach"
] ]
}, },
{ {
...@@ -111,14 +93,17 @@ ...@@ -111,14 +93,17 @@
} }
], ],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline \n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
"N = 1000\n", "N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
...@@ -129,7 +114,7 @@ ...@@ -129,7 +114,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
" It is then straightforward to obtain a (not really good) approximation to π by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment