Commit 13e83c5b authored by Valentin Mathieu's avatar Valentin Mathieu

Série de corrections mineures n°2 pour validation de l'exercice

parent 8f5bb63d
...@@ -5,20 +5,19 @@ date: "25 juin 2018" ...@@ -5,20 +5,19 @@ date: "25 juin 2018"
output: html_document output: html_document
--- ---
```{r setup, include=FALSE} ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(echo = TRUE)
``` ```
## En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur mindique que $\pi$ vaut *approximativement* Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars} ```{r cars}
pi pi
``` ```
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -28,8 +27,8 @@ theta = pi/2*runif(N) ...@@ -28,8 +27,8 @@ theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
``` ```
## Avec un argument “fréquentiel” de surface ## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^{2} + Y^{2} \leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait: Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -38,9 +37,10 @@ df = data.frame(X = runif(N), Y = runif(N)) ...@@ -38,9 +37,10 @@ df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1) df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2) library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^{2} + Y^{2}$ est inférieur à 1: Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
......
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment