update

parent 03329c32
......@@ -11,14 +11,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## En demandant à la lib maths"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon ordinateur m’indique que *π* vaut *approximativement*"
"## En demandant à la lib maths\n",
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
]
},
{
......@@ -43,19 +37,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode des aiguilles de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 7,
"metadata": {},
"outputs": [
{
......@@ -64,13 +52,14 @@
"3.128911138923655"
]
},
"execution_count": 2,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
......@@ -82,21 +71,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"fréquentiel\" de surface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si $X ∼ U(0, 1)$ et $Y ∼ U(0, 1)$ alors $P[X2 + Y2 ≤ 1] = π/4$ (voir\n",
"[méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -115,11 +96,12 @@
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"1\n",
"\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
......@@ -132,13 +114,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de *π* en comptant combien de fois,\n",
"en moyenne, $X2 + Y2$ est inférieur à 1 :"
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"outputs": [
{
......@@ -147,7 +128,7 @@
"3.112"
]
},
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment