"méthode" en caractère gras

parent f1865b83
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## En utilisant la méthode des aiguilles de Buffon\n", "## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la méthode des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:" "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:"
] ]
}, },
{ {
...@@ -65,13 +65,12 @@ ...@@ -65,13 +65,12 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Avec un argument \"fréquentiel\" de surface\n", "## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2+Y^2 \\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant montre ce fait:"
"sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2+Y^2 \\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant montre ce fait:"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -90,12 +89,14 @@ ...@@ -90,12 +89,14 @@
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
"N = 1000\n", "N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
...@@ -106,8 +107,7 @@ ...@@ -106,8 +107,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$\n", "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 :"
"est inférieur à 1 :"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment