Update toy_document_orgmode_python_en.org

parent ce019990
......@@ -27,7 +27,7 @@ pi
#+RESULTS:
* 2. *Buffon's needle
Applying the method of [[https://en.wikipedia.org/wiki/Buffon%27s_needle_problem][Buffon's needle]], we get the *approximation*
Applying the method of [[https://en.wikipedia.org/wiki/Buffon%27s_needle_problem][_Buffon's needle_]], we get the *approximation*
#+begin_src python :results output :exports both
import numpy as np
np.random.seed(seed=42)
......@@ -42,8 +42,8 @@ theta=np.random.uniform(size=N, low=0, high = pi/2)
* 3. Using a surface fraction argument
A method that is easier to understand and does not make use of the sin
function is based on the fact that if $X \sim U(0,1)$ and $Y \sim
U(0,1)$, then $P[X^2 + Y^2 \leq 1] = \pi/4$ (see [[https://en.wikipedia.org/wiki/Monte_Carlo_method][Monte Carlo method on
Wikipedia]]). THe following code use this approach:
U(0,1)$, then $P[X^2 + Y^2 \leq 1] = \pi/4$ (see [[https://en.wikipedia.org/wiki/Monte_Carlo_method][_"Monte Carlo method on
Wikipedia"_]]). THe following code use this approach:
#+begin_src python :results output :exports both
import matplotlib.pyplot as plt
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment