Update toy_document_fr.Rmd

parent 40eef562
--- --- ---
title: "À propos du calcul de pi" title: "À propos du calcul de pi"
author: "Arnaud Legrand" author: "Arnaud Legrand"
date: "25 juin 2018" date: "25 juin 2018"
output: html_document output: html_document
--- ---
```{r setup, include=FALSE} ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(echo = TRUE)
``` ```
## En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement* Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars} ```{r cars}
pi pi
``` ```
## En utilisant la méthode des aiguilles de Buffon summary(cars) ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r} ```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
``` ```
## Avec un argument "fréquentiel" de surface ## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1) df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2) library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
``` ```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment