...
 
Commits (22)
test
\ No newline at end of file
# Partie 1
## Sous-partie 1 : texte
Une phrase sans rien
*Une phrase en italique*
**Une phrase en gras**
Un lien vers [fun-mooc.fr](https://www.fun-mooc.fr/)
Une ligne de `code`
## Sous-partie 2 : listes
**Liste à puce**
- item
- sous-item
- sous-item
- item
- item
**Liste numérotée**
1. item
2. item
3. item
## Sous-partie 3 : code
```
# Extrait de code
```
\ No newline at end of file
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
title: "À propos du calcul de pi"
author: "Arnaud Legrand"
date: "25 juin 2018"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
```{r cars}
pi
```
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r cars}
summary(cars)
```{r}
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
Et on peut aussi aisément inclure des figures. Par exemple:
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```{r pressure, echo=FALSE}
plot(pressure)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
```{r}
4*mean(df$Accept)
```
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
Ceci est un document org-mode avec quelques exemples de code
R. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
compilé en html. Tout le code contenu sera ré-exécuté, les résultats
récupérés et inclus dans un document final. Si vous ne souhaitez pas
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
Comme nous vous l'avons montré dans la vidéo, on inclut du code
R de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src R :results output :exports both
print("Hello world!")
#+end_src
#+RESULTS:
: [1] "Hello world!"
Voici la même chose, mais avec une session R (c'est le cas le
plus courant, R étant vraiment un langage interactif), donc une
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~).
#+begin_src R :results output :session *R* :exports both
summary(cars)
#+end_src
#+RESULTS:
: speed dist
: Min. : 4.0 Min. : 2.00
: 1st Qu.:12.0 1st Qu.: 26.00
: Median :15.0 Median : 36.00
: Mean :15.4 Mean : 42.98
: 3rd Qu.:19.0 3rd Qu.: 56.00
: Max. :25.0 Max. :120.00
Et enfin, voici un exemple de sortie graphique:
#+begin_src R :results output graphics :file "./cars.png" :exports results :width 600 :height 400 :session *R*
plot(cars)
#+end_src
#+RESULTS:
[[file:./cars.png]]
Vous remarquerez le paramètre ~:exports results~ qui indique que le code
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles.
Attention, la figure ainsi générée n'est pas stockée dans le document
org. C'est un fichier ordinaire, ici nommé ~cars.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et
compréhensible sur GitLab.
Enfin, pour les prochains exercices, nous ne vous fournirons pas
forcément de fichier de départ, ça sera à vous de le créer, par
exemple en repartant de ce document et de le commiter vers
gitlab. N'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code R (en
faisant ~<r~ ou ~<R~ suivi de ~Tab~).
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.
title: "À propos du calcul de pi"
author: "Arnaud Legrand"
date: "25 juin 2018"
output: html_document
---
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## En demandant à la lib mats
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r}
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
\ No newline at end of file
......@@ -16,8 +16,9 @@ Ceci est un document R markdown que vous pouvez aisément exporter au format HTM
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
```{r cars}
summary(cars)
```{r}
test = c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
mean(test)
```
Et on peut aussi aisément inclure des figures. Par exemple:
......
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
#+TITLE: Your title
#+AUTHOR: Your name
#+DATE: Today's date
#+LANGUAGE: en
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Some explanations
This is an org-mode document with code examples in R. Once opened in
Emacs, this document can easily be exported to HTML, PDF, and Office
formats. For more information on org-mode, see
https://orgmode.org/guide/.
When you type the shortcut =C-c C-e h o=, this document will be
exported as HTML. All the code in it will be re-executed, and the
results will be retrieved and included into the exported document. If
you do not want to re-execute all code each time, you can delete the #
and the space before ~#+PROPERTY:~ in the header of this document.
Like we showed in the video, R code is included as follows (and is
exxecuted by typing ~C-c C-c~):
#+begin_src R :results output :exports both
print("Hello world!")
#+end_src
#+RESULTS:
: [1] "Hello world!"
And now the same but in an R session. This is the most frequent
situation, because R is really an interactive language. With a
session, R's state, i.e. the values of all the variables, remains
persistent from one code block to the next. The code is still executed
using ~C-c C-c~.
#+begin_src R :results output :session *R* :exports both
summary(cars)
#+end_src
#+RESULTS:
: speed dist
: Min. : 4.0 Min. : 2.00
: 1st Qu.:12.0 1st Qu.: 26.00
: Median :15.0 Median : 36.00
: Mean :15.4 Mean : 42.98
: 3rd Qu.:19.0 3rd Qu.: 56.00
: Max. :25.0 Max. :120.00
Finally, an example for graphical output:
#+begin_src R :results output graphics :file "./cars.png" :exports results :width 600 :height 400 :session *R*
plot(cars)
#+end_src
#+RESULTS:
[[file:./cars.png]]
Note the parameter ~:exports results~, which indicates that the code
will not appear in the exported document. We recommend that in the
context of this MOOC, you always leave this parameter setting as
~:exports both~, because we want your analyses to be perfectly
transparent and reproducible.
Watch out: the figure generated by the code block is /not/ stored in
the org document. It's a plain file, here named ~cars.png~. You have
to commit it explicitly if you want your analysis to be legible and
understandable on GitLab.
Finally, don't forget that we provide in the resource section of this
MOOC a configuration with a few keyboard shortcuts that allow you to
quickly create code blocks in R by typing ~<r~ or ~<R~ followed by
~Tab~.
Now it's your turn! You can delete all this information and replace it
by your computational document.
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
Ceci est un document org-mode avec quelques exemples de code
R. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
compilé en html. Tout le code contenu sera ré-exécuté, les résultats
récupérés et inclus dans un document final. Si vous ne souhaitez pas
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
Comme nous vous l'avons montré dans la vidéo, on inclut du code
R de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src R :results output :exports both
print("Hello world!")
#+end_src
#+RESULTS:
: [1] "Hello world!"
Voici la même chose, mais avec une session R (c'est le cas le
plus courant, R étant vraiment un langage interactif), donc une
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~).
#+begin_src R :results output :session *R* :exports both
summary(cars)
#+end_src
#+RESULTS:
: speed dist
: Min. : 4.0 Min. : 2.00
: 1st Qu.:12.0 1st Qu.: 26.00
: Median :15.0 Median : 36.00
: Mean :15.4 Mean : 42.98
: 3rd Qu.:19.0 3rd Qu.: 56.00
: Max. :25.0 Max. :120.00
Et enfin, voici un exemple de sortie graphique:
#+begin_src R :results output graphics :file "./cars.png" :exports results :width 600 :height 400 :session *R*
plot(cars)
#+end_src
#+RESULTS:
[[file:./cars.png]]
Vous remarquerez le paramètre ~:exports results~ qui indique que le code
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles.
Attention, la figure ainsi générée n'est pas stockée dans le document
org. C'est un fichier ordinaire, ici nommé ~cars.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et
compréhensible sur GitLab.
Enfin, pour les prochains exercices, nous ne vous fournirons pas
forcément de fichier de départ, ça sera à vous de le créer, par
exemple en repartant de ce document et de le commiter vers
gitlab. N'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code R (en
faisant ~<r~ ou ~<R~ suivi de ~Tab~).
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.
---
title: "Your title"
author: "Your name"
date: "Today's date"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Some explanations
This is an R Markdown document that you can easily export to HTML, PDF, and MS Word formats. For more information on R Markdown, see <http://rmarkdown.rstudio.com>.
When you click on the button **Knit**, the document will be compiled in order to re-execute the R code and to include the results into the final document. As we have shown in the video, R code is inserted as follows:
```{r cars}
summary(cars)
```
It is also straightforward to include figures. For example:
```{r pressure, echo=FALSE}
plot(pressure)
```
Note the parameter `echo = FALSE` that indicates that the code will not appear in the final version of the document. We recommend not to use this parameter in the context of this MOOC, because we want your data analyses to be perfectly transparent and reproducible.
Since the results are not stored in Rmd files, you should generate an HTML or PDF version of your exercises and commit them. Otherwise reading and checking your analysis will be difficult for anyone else but you.
Now it's your turn! You can delete all this information and replace it by your computational document.
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
output: html_document
title: "Estimation de la latence et de la capacité d’une connexion à partir de mesures asymétriques"
author: "Louis Le Nézet"
output:
pdf_document:
toc: true
html_document:
toc: true
theme: journal
documentclass: article
classoption: a4paper
header-includes:
- \usepackage[french]{babel}
- \usepackage[upright]{fourier}
- \hypersetup{colorlinks=true,pagebackref=true}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
## Problématique
Un modèle simple et fréquemment utilisé pour décrire la performance d'une connexion de réseau consiste à supposer que le temps d'envoi T pour un message dépend principalement de sa taille S (nombre d'octets) et de deux grandeurs propres à la connexion : la latence L (en secondes) et la capacité C (en octets/seconde). La relation entre ces quatre quantités est T(S) = L + S/C. Ce modèle néglige un grand nombre de détails. D'une part, L et C dépendent bien sûr du protocole de communication choisi mais aussi dans une certaine mesure de S. D'autre part, la mesure de T(S) comporte en général une forte composante aléatoire. Nous nous intéressons ici au temps moyen qu'il faut pour envoyer un message d'une taille donnée.
## Objectif
Nous souhaitons ici estimer L et C à partir d'une série d'observations de T pour des valeurs différentes de S.
## Préparation des données
1) Le premier jeu de données examine une connexion courte à l'intérieur d'un campus disponible [ici](http://mescal.imag.fr/membres/arnaud.legrand/teaching/2014/RICM4_EP_ping/liglab2.log.gz) L'URL est:
```{r}
data_url1 = "http://mescal.imag.fr/membres/arnaud.legrand/teaching/2014/RICM4_EP_ping/liglab2.log.gz"
```
Pour nous protéger contre une éventuelle disparition ou modification du serveur du site, nous faisons une copie locale de ce jeux de données que nous préservons avec notre analyse. Il est inutile et même risquée de télécharger les données à chaque exécution, car dans le cas d'une panne nous pourrions remplacer nos données par un fichier défectueux. Pour cette raison, nous téléchargeons les données seulement si la copie locale n'existe pas.
```{r}
data_file_gz = "liglab2.log.gz"
if (!file.exists(data_file_gz)) {
download.file(data_url1, data_file, method="auto")
}
```
Il faut ensuite charger les données dans un objet R
```{r}
liglab2 <- read.table(data_file, header=FALSE, sep=";")
```
Il va falloir désormais séparer les données en fonction de leur emplacement.
Les données sont pour l'instant en format string.
Au début, entre crochet, vous trouvez la date à laquelle la mesure a été prise, exprimée en secondes depuis le 1er janvier 1970. La taille du message en octets est donnée juste après, suivie par le nom de la machine cible et son adresse IP, qui sont normalement identiques pour toutes les lignes à l'intérieur d'un jeu de données. À la fin de la ligne, nous trouvons le temps d'envoi (aller-retour) en millisecondes. Les autres indications, icmp_seq et ttl, n'ont pas d'importance pour notre analyse. Attention, il peut arriver qu'une ligne soit incomplète et il faut donc vérifier chaque ligne avant d'en extraire des informations !
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Ici est écris la fonction qui sépare tout d'abord les données.
Puis extrait les données nécessaire en les mettant dans une liste
```{r}
require(stringr)
extract_infos <- function(x){
infos = str_split(x," ")
infos = str_remove_all(infos[[1]],"\\[|\\]|\\(|\\)|:")
data=list()
data["date_ms"] = as.numeric(infos[1])
data["size"] = as.integer(infos[2])
data["ip"] = infos[6]
if (any(str_detect(infos,"time="))){
data["time"] = as.integer(str_remove(infos[str_detect(infos,"time=")],"time="))
}else{
data["time"] = NA
}
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
return(data)
}
```
```{r cars}
summary(cars)
We need now to apply this function on the whole data and use it as a dataframe
```{r}
library(data.table)
df = rbindlist(lapply(liglab2$V1, extract_infos))
```
Et on peut aussi aisément inclure des figures. Par exemple:
```{r pressure, echo=FALSE}
plot(pressure)
Pour la gestion de date nous allons utiliser la librairie parsedate
```{r}
df$date=as.POSIXct(df$date_ms,origin='1970-01-01 00:00')
summary(df)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
```{r}
library(ggplot2)
ggplot(df,aes(x=date,time))+
geom_point()
ggplot(head(df,200),aes(x=date,time))+
geom_point()
ggplot(tail(df,200),aes(x=date,time))+
geom_point()
```
A première vue il semble y avoir une différence de temps à partir de 1480 bytes.
```{r}
library(ggplot2)
ggplot(df,aes(x=size,time))+
geom_point()
ggplot(df[df$size>1450 & df$size<1500,],aes(x=size,time))+
geom_point()
```
On crée donc deux classe
```{r}
df$class = cut(df$size,breaks = c(0,1480,2020), labels=c("small", "big"))
```
Et on peut représenter désormais l'impact en fonction de la taille et de la class sur le temps
```{r}
library(ggpmisc)
ggplot(df, aes(x=size, y=time, colour=class))+
stat_poly_line() +
stat_poly_eq(aes(label = paste(after_stat(eq.label),
after_stat(rr.label), sep = "*\", \"*"))) +
geom_point()
```
La variabilité est tellement forte et asymétrique que la régression du temps moyen peut être considérée comme peu pertinente. On peut vouloir s'intéresser à caractériser plutôt le plus petit temps de transmission. Une approche possible consiste donc à filtrer le plus petit temps de transmission pour chaque taille de message et à effectuer la régression sur ce sous-ensemble de données.
```{r}
library(quantreg)
modelSmall <- rq(time ~ size , data = df[df$class=="small",], tau = 0.1)
summary(modelSmall, se = "iid")
modelBig <- rq(time ~ size , data = df[df$class=="big",], tau = 0.1)
summary(modelBig, se = "iid")
```
Avec cette analyse on remarque que la latence pour le premier quantile est de 1 seconde pour les petits paquets et de 2 secondes pour les gros.
La capacité de connexion est aussi différente 0.00049 pour les petits et 0.00632 pour les gros.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Il est possible de refaire cette analyse avec l'autre jeux de données disponible [ici](http://mescal.imag.fr/membres/arnaud.legrand/teaching/2014/RICM4_EP_ping/stackoverflow.log.gz)
En changeant simplement l'url par celle-ci http://mescal.imag.fr/membres/arnaud.legrand/teaching/2014/RICM4_EP_ping/stackoverflow.log.gz
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
#+TITLE: Your title
#+AUTHOR: Your name
#+DATE: Today's date
#+LANGUAGE: en
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Some explanations
This is an org-mode document with code examples in R. Once opened in
Emacs, this document can easily be exported to HTML, PDF, and Office
formats. For more information on org-mode, see
https://orgmode.org/guide/.
When you type the shortcut =C-c C-e h o=, this document will be
exported as HTML. All the code in it will be re-executed, and the
results will be retrieved and included into the exported document. If
you do not want to re-execute all code each time, you can delete the #
and the space before ~#+PROPERTY:~ in the header of this document.
Like we showed in the video, Python code is included as follows (and
is exxecuted by typing ~C-c C-c~):
#+begin_src python :results output :exports both
print("Hello world!")
#+end_src
#+RESULTS:
: Hello world!
And now the same but in an Python session. With a session, Python's
state, i.e. the values of all the variables, remains persistent from
one code block to the next. The code is still executed using ~C-c
C-c~.
#+begin_src python :results output :session :exports both
import numpy
x=numpy.linspace(-15,15)
print(x)
#+end_src
#+RESULTS:
#+begin_example
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Finally, an example for graphical output:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:./cosxsx.png]]
Note the parameter ~:exports results~, which indicates that the code
will not appear in the exported document. We recommend that in the
context of this MOOC, you always leave this parameter setting as
~:exports both~, because we want your analyses to be perfectly
transparent and reproducible.
Watch out: the figure generated by the code block is /not/ stored in
the org document. It's a plain file, here named ~cosxsx.png~. You have
to commit it explicitly if you want your analysis to be legible and
understandable on GitLab.
Finally, don't forget that we provide in the resource section of this
MOOC a configuration with a few keyboard shortcuts that allow you to
quickly create code blocks in Python by typing ~<p~, ~<P~ or ~<PP~
followed by ~Tab~.
Now it's your turn! You can delete all this information and replace it
by your computational document.
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
Ceci est un document org-mode avec quelques exemples de code
python. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
compilé en html. Tout le code contenu sera ré-exécuté, les résultats
récupérés et inclus dans un document final. Si vous ne souhaitez pas
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
Comme nous vous l'avons montré dans la vidéo, on inclue du code
python de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src python :results output :exports both
print("Hello world!")
#+end_src
#+RESULTS:
: Hello world!
Voici la même chose, mais avec une session python, donc une
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~).
#+begin_src python :results output :session :exports both
import numpy
x=numpy.linspace(-15,15)
print(x)
#+end_src
#+RESULTS:
#+begin_example
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Et enfin, voici un exemple de sortie graphique:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:./cosxsx.png]]
Vous remarquerez le paramètre ~:exports results~ qui indique que le code
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles.
Attention, la figure ainsi générée n'est pas stockée dans le document
org. C'est un fichier ordinaire, ici nommé ~cosxsx.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et
compréhensible sur GitLab.
Enfin, n'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code python (en
faisant ~<p~, ~<P~ ou ~<PP~ suivi de ~Tab~).
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.