Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
bcd5f406b2a667e8cf7612a7644cd3f8
mooc-rr
Commits
3c08d49c
Commit
3c08d49c
authored
Sep 19, 2023
by
bcd5f406b2a667e8cf7612a7644cd3f8
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fichier en HTML, Markdown, figure et jupyter
parent
4d6905b2
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
13422 additions
and
0 deletions
+13422
-0
Exercice Mod 2 Exe 1 en jupyter.pdf
module2/exo1/Exercice Mod 2 Exe 1 en jupyter.pdf
+0
-0
Mon_toy_notebook_fr.html
module2/exo1/Mon_toy_notebook_fr.html
+13335
-0
Mon_toy_notebook_fr.md
module2/exo1/Mon_toy_notebook_fr.md
+87
-0
output_12_0.png
module2/exo1/output_12_0.png
+0
-0
No files found.
module2/exo1/Exercice Mod 2 Exe 1 en jupyter.pdf
0 → 100644
View file @
3c08d49c
File added
module2/exo1/Mon_toy_notebook_fr.html
0 → 100644
View file @
3c08d49c
This diff is collapsed.
Click to expand it.
module2/exo1/Mon_toy_notebook_fr.md
0 → 100644
View file @
3c08d49c
<div
align=
"center"
>
Mon_toy_notebook_fr
</div>
<div
align=
"center"
>
Martha HENRI
</div>
<div
align=
"center"
>
19/09/2023
</div>
## 1 A propos du calcul de $\pi$
## 1.1 En demandant à la lib maths
Mon ordinateur m'indique que $
\p
i$ vaut
*aproximativement*
```python
from math import *
print(pi)
```
3.141592653589793
## 1.2 En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la
**méthode**
des
[
aiguilles de Buffon
](
https://fr.wikipedia.org/wiki/Aiguille_de_Buffon
)
, on obtiendrait comme __aproximation__ :
```python
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=pi/2)
2/(sum((x+np.sin(theta))>1)/N)
```
3.128911138923655
## 1.3 Avec un argument "frequentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction
sinus se base sur le fait que si X ~ U(0, 1) et Y ~ U(0, 1) alors P
[
X<sup>2</sup> + Y<sup>2</sup> <= 1
]
= $
\p
i$/4 (voir
[
méthode de Monte Carlo sur Wikipedia
](
https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo
)
). Le code suivant illustre ce fait :
```python
%matplotlib inline
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
```

Il est alors aisé d’obtenir une approximation (pas terrible) de $
\p
i$ en comptant combien de fois,
en moyenne, X
<sup>
2
</sup>
+ Y
<sup>
2
</sup>
est inférieur à 1 :
```python
4*np.mean(accept)
```
3.112
module2/exo1/output_12_0.png
0 → 100644
View file @
3c08d49c
37.2 KB
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment