Mon ordinateur m'indique que /π/ vaut /approximativement/
#+begin_src R :results output :session *R* :exports both
pi
#+end_src
#+RESULTS:
: [1] 3.141593
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait
comme *approximation* :
#+begin_src R :results output :session *R* :exports both
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
#+end_src
#+RESULTS:
:
: [1] 3.14327
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si
$X∼U(0,1) et $Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo
sur Wikipedia]]). Le code suivant illustre ce fait :
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R*