Mon ordinateur m’indique que *π* vaut approximativement
Mon ordinateur m’indique que $\pi$ vaut approximativement
```{r}
```{r}
pi
pi
...
@@ -23,7 +28,7 @@ theta = pi/2*runif(N)
...
@@ -23,7 +28,7 @@ theta = pi/2*runif(N)
```
```
## Avec un argument “fréquentiel” de surface
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si *X∼U(0,1)* et *Y∼U(0,1)* alors *P[X2+Y2≤1]=π/4* (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :