Commit 33c48a1c authored by Émile Jetzer's avatar Émile Jetzer 🎱

Exercice org-mode

parent 4c7c6773
# Journal de bord du Mooc / Mooc's logbook ---
title: Journal de bord du MOOC
author: Émile Jetzer
---
FR # Journal de bord du Mooc
Espace réservé au journal de bord du Mooc
EN
Reserved for the Mooc's logbook
\ No newline at end of file
#+TITLE: Votre titre #+TITLE: À propos du calcul de \(\pi\)
#+AUTHOR: Votre nom #+AUTHOR: Émile Jetzer
#+DATE: La date du jour #+DATE: 2020-05-14
#+LANGUAGE: fr #+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export # #+PROPERTY: header-args :eval never-export
...@@ -11,83 +11,75 @@ ...@@ -11,83 +11,75 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications * En demandant à la lib maths
Ceci est un document org-mode avec quelques exemples de code Mon ordinateur m'indique que \(\pi\) vaut /approximativement/:
python. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera #+begin_src python :export both :session "Python"
compilé en html. Tout le code contenu sera ré-exécuté, les résultats import math
récupérés et inclus dans un document final. Si vous ne souhaitez pas math.pi
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
Comme nous vous l'avons montré dans la vidéo, on inclue du code
python de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src python :results output :exports both
print("Hello world!")
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: Hello world! : 3.141592653589793
Voici la même chose, mais avec une session python, donc une * En utilisant la méthode des aiguilles de Buffon
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~). Mais calculé avec la *méthode* des [aiguilles de
#+begin_src python :results output :session :exports both Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on
import numpy obtiendrait comme *approximation*:
x=numpy.linspace(-15,15)
print(x) #+begin_src python :session "Python"
import numpy as np
np.random.seed(seed=42)
N=10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=math.pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
#+begin_example : 3.128911138923655
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592 * Avec un argument "fréquentiel" de surface
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694 Sinon, une méthode plus simple à comprendre et ne faisant pas
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245 intervenir d'appel à la fonction sinus se base sur le fait que si
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204 \(X\tilde U(0, 1)\) et \(Y\tilde U(0, 1)\) alors \(P[X^2+Y^2 \leq 1]=\pi /4\)
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653 (voir [méthode de Monte Carle sur
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102 Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551 code suivant illustre ce fait:
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example #+begin_src python :session "Python" :export both
Et enfin, voici un exemple de sortie graphique:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
plt.figure(figsize=(10,5)) np.random.seed(seed=42)
plt.plot(x,numpy.cos(x)/x) N = 1000
plt.tight_layout() x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x + y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename) plt.savefig(matplot_lib_filename)
print(matplot_lib_filename) print(matplot_lib_filename)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
[[file:./cosxsx.png]] : <matplotlib.collections.PathCollection object at 0x11abb2940>
Vous remarquerez le paramètre ~:exports results~ qui indique que le code Il est alors aisé d'obtenir une approximation (pas terrible) de \(\pi\)
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre en comptant combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1:
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles. #+begin_src python :session "Python"
4*np.mean(accept)
Attention, la figure ainsi générée n'est pas stockée dans le document #+end_src
org. C'est un fichier ordinaire, ici nommé ~cosxsx.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et #+RESULTS:
compréhensible sur GitLab. : 3.112
Enfin, n'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code python (en
faisant ~<p~, ~<P~ ou ~<PP~ suivi de ~Tab~).
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
Ceci est un document org-mode avec quelques exemples de code
python. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
compilé en html. Tout le code contenu sera ré-exécuté, les résultats
récupérés et inclus dans un document final. Si vous ne souhaitez pas
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
Comme nous vous l'avons montré dans la vidéo, on inclue du code
python de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src python :results output :exports both
print("Hello world!")
#+end_src
#+RESULTS:
: Hello world!
Voici la même chose, mais avec une session python, donc une
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~).
#+begin_src python :results output :session :exports both
import numpy
x=numpy.linspace(-15,15)
print(x)
#+end_src
#+RESULTS:
#+begin_example
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Et enfin, voici un exemple de sortie graphique:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:./cosxsx.png]]
Vous remarquerez le paramètre ~:exports results~ qui indique que le code
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles.
Attention, la figure ainsi générée n'est pas stockée dans le document
org. C'est un fichier ordinaire, ici nommé ~cosxsx.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et
compréhensible sur GitLab.
Enfin, n'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code python (en
faisant ~<p~, ~<P~ ou ~<PP~ suivi de ~Tab~).
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment