Commit aba77286 authored by Émile Jetzer's avatar Émile Jetzer 🎱

Complétion du module 2

parent d2e319ac
File added
This diff is collapsed.
......@@ -25,7 +25,7 @@ math.pi
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des[[(https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de
Mais calculé avec la *méthode* des[(https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de
Buffon]], on
obtiendrait comme *approximation*:
......@@ -46,7 +46,7 @@ theta = np.random.uniform(size=N, low=0, high=math.pi/2)
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si
\(X\tilde U(0, 1)\) et \(Y\tilde U(0, 1)\) alors \(P[X^2+Y^2 \leq 1]=\pi /4\)
(voir [[(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carle sur
(voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carle sur
Wikipedia]]. Le
code suivant illustre ce fait:
......
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+TITLE: À propos du calcul de \(\pi\)
#+AUTHOR: Émile Jetzer
#+DATE: 2020-05-14
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
......@@ -11,83 +11,81 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
* En demandant à la lib maths
Ceci est un document org-mode avec quelques exemples de code
python. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
Mon ordinateur m'indique que \(\pi\) vaut /approximativement/:
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
compilé en html. Tout le code contenu sera ré-exécuté, les résultats
récupérés et inclus dans un document final. Si vous ne souhaitez pas
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
Comme nous vous l'avons montré dans la vidéo, on inclue du code
python de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src python :results output :exports both
print("Hello world!")
#+begin_src python :results value :session "Python" :exports both
import math
math.pi
#+end_src
#+RESULTS:
: Hello world!
Voici la même chose, mais avec une session python, donc une
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~).
#+begin_src python :results output :session :exports both
import numpy
x=numpy.linspace(-15,15)
print(x)
: 3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des[[(https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de
Buffon]], on
obtiendrait comme *approximation*:
#+begin_src python :results value :session "Python" :exports both
import numpy as np
np.random.seed(seed=42)
N=10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=math.pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src
#+RESULTS:
#+begin_example
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Et enfin, voici un exemple de sortie graphique:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
: 3.128911138923655
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si
\(X\tilde U(0, 1)\) et \(Y\tilde U(0, 1)\) alors \(P[X^2+Y^2 \leq 1]=\pi /4\)
(voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carle sur
Wikipedia]]. Le
code suivant illustre ce fait:
#+begin_src python :results output file :var matplot_lib_filename="figure_pi_mc2.png" :session "Python" :exports both
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x + y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:./cosxsx.png]]
Vous remarquerez le paramètre ~:exports results~ qui indique que le code
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles.
Attention, la figure ainsi générée n'est pas stockée dans le document
org. C'est un fichier ordinaire, ici nommé ~cosxsx.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et
compréhensible sur GitLab.
Enfin, n'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code python (en
faisant ~<p~, ~<P~ ou ~<PP~ suivi de ~Tab~).
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.
[[file:]]
Il est alors aisé d'obtenir une approximation (pas terrible) de \(\pi\)
en comptant combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1:
#+begin_src python :results output :session "Python" :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
: 3.112
:
:
]]
......@@ -11,83 +11,63 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
* Calculs simples divers
Ceci est un document org-mode avec quelques exemples de code
python. Une fois ouvert dans emacs, ce document peut aisément être
exporté au format HTML, PDF, et Office. Pour plus de détails sur
org-mode vous pouvez consulter https://orgmode.org/guide/.
#+begin_src python :results value :session "Python"
données = [ 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9,
2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9,
11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9,
13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2,
14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4,
14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7,
10.2, 8.9, 21.0 ]
Lorsque vous utiliserez le raccourci =C-c C-e h o=, ce document sera
compilé en html. Tout le code contenu sera ré-exécuté, les résultats
récupérés et inclus dans un document final. Si vous ne souhaitez pas
ré-exécuter tout le code à chaque fois, il vous suffit de supprimer
le # et l'espace qui sont devant le ~#+PROPERTY:~ au début de ce
document.
import numpy as np
Comme nous vous l'avons montré dans la vidéo, on inclue du code
python de la façon suivante (et on l'exécute en faisant ~C-c C-c~):
#+begin_src python :results output :exports both
print("Hello world!")
données = np.array(données)
données
#+end_src
#+RESULTS:
: Hello world!
| 14 | 7.6 | 11.2 | 12.8 | 12.5 | 9.9 | 14.9 | 9.4 | 16.9 | 10.2 | 14.9 | 18.1 | 7.3 | 9.8 | 10.9 | 12.2 | 9.9 | 2.9 | 2.8 | 15.4 | 15.7 | 9.7 | 13.1 | 13.2 | 12.3 | 11.7 | 16 | 12.4 | 17.9 | 12.2 | 16.2 | 18.7 | 8.9 | 11.9 | 12.1 | 14.6 | 12.1 | 4.7 | 3.9 | 16.9 | 16.8 | 11.3 | 14.4 | 15.7 | 14 | 13.6 | 18 | 13.6 | 19.9 | 13.7 | 17 | 20.5 | 9.9 | 12.5 | 13.2 | 16.1 | 13.5 | 6.3 | 6.4 | 17.6 | 19.1 | 12.8 | 15.5 | 16.3 | 15.2 | 14.6 | 19.1 | 14.4 | 21.4 | 15.1 | 19.6 | 21.7 | 11.3 | 15 | 14.3 | 16.8 | 14 | 6.8 | 8.2 | 19.9 | 20.4 | 14.6 | 16.4 | 18.7 | 16.8 | 15.8 | 20.4 | 15.8 | 22.4 | 16.2 | 20.3 | 23.4 | 12.1 | 15.5 | 15.4 | 18.4 | 15.7 | 10.2 | 8.9 | 21 |
* Calculer la moyenne
Voici la même chose, mais avec une session python, donc une
persistance d'un bloc à l'autre (et on l'exécute toujours en faisant
~C-c C-c~).
#+begin_src python :results output :session :exports both
import numpy
x=numpy.linspace(-15,15)
print(x)
#+begin_src python :results output :session "Python"
print('Moyenne', données.mean())
print('Écart-type', données.std(ddof=1))
print('Médiane', np.median(données))
print('Maximum', données.max())
print('Minimum', données.min())
#+end_src
#+RESULTS:
#+begin_example
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Et enfin, voici un exemple de sortie graphique:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(x,numpy.cos(x)/x)
plt.tight_layout()
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
: Moyenne 14.113000000000001
: Écart-type 4.334094455301447
: Médiane 14.5
: Maximum 23.4
: Minimum 2.8
:
:
#+begin_src python :results file :session "Python" :exports both
import matplotlib.pyplot as pyplot
pyplot.clf()
pyplot.plot(données)
pyplot.savefig('~/graphe1.svg')
'~/graphe1.svg'
#+end_src
#+RESULTS:
[[file:./cosxsx.png]]
[[file:~/graphe1.svg]]
Vous remarquerez le paramètre ~:exports results~ qui indique que le code
ne doit pas apparaître dans la version finale du document. Nous vous
recommandons dans le cadre de ce MOOC de ne pas changer ce paramètre
(indiquer ~both~) car l'objectif est que vos analyses de données soient
parfaitement transparentes pour être reproductibles.
Attention, la figure ainsi générée n'est pas stockée dans le document
org. C'est un fichier ordinaire, ici nommé ~cosxsx.png~. N'oubliez pas
de le committer si vous voulez que votre analyse soit lisible et
compréhensible sur GitLab.
Enfin, n'oubliez pas que nous vous fournissons dans les ressources de
ce MOOC une configuration avec un certain nombre de raccourcis
claviers permettant de créer rapidement les blocs de code python (en
faisant ~<p~, ~<P~ ou ~<PP~ suivi de ~Tab~).
#+begin_src python :results file :session "Python" :exports both
pyplot.clf()
pyplot.hist(données)
pyplot.savefig('~/graphe2.svg')
'~/graphe2.svg'
#+end_src
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces
informations et les remplacer par votre document computationnel.
#+RESULTS:
[[file:~/graphe2.svg]]
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Calculs simples divers
#+begin_src python :results value :session "Python"
données = [ 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9,
2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9,
11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9,
13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2,
14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4,
14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7,
10.2, 8.9, 21.0 ]
import numpy as np
données = np.array(données)
données
#+end_src
#+RESULTS:
| 14 | 7.6 | 11.2 | 12.8 | 12.5 | 9.9 | 14.9 | 9.4 | 16.9 | 10.2 | 14.9 | 18.1 | 7.3 | 9.8 | 10.9 | 12.2 | 9.9 | 2.9 | 2.8 | 15.4 | 15.7 | 9.7 | 13.1 | 13.2 | 12.3 | 11.7 | 16 | 12.4 | 17.9 | 12.2 | 16.2 | 18.7 | 8.9 | 11.9 | 12.1 | 14.6 | 12.1 | 4.7 | 3.9 | 16.9 | 16.8 | 11.3 | 14.4 | 15.7 | 14 | 13.6 | 18 | 13.6 | 19.9 | 13.7 | 17 | 20.5 | 9.9 | 12.5 | 13.2 | 16.1 | 13.5 | 6.3 | 6.4 | 17.6 | 19.1 | 12.8 | 15.5 | 16.3 | 15.2 | 14.6 | 19.1 | 14.4 | 21.4 | 15.1 | 19.6 | 21.7 | 11.3 | 15 | 14.3 | 16.8 | 14 | 6.8 | 8.2 | 19.9 | 20.4 | 14.6 | 16.4 | 18.7 | 16.8 | 15.8 | 20.4 | 15.8 | 22.4 | 16.2 | 20.3 | 23.4 | 12.1 | 15.5 | 15.4 | 18.4 | 15.7 | 10.2 | 8.9 | 21 |
* Calculer la moyenne
#+begin_src python :results output :session "Python"
print('Moyenne', données.mean())
print('Écart-type', données.std(ddof=1))
print('Médiane', np.median(données))
print('Maximum', données.max())
print('Minimum', données.min())
#+end_src
#+RESULTS:
: Moyenne 14.113000000000001
: Écart-type 4.334094455301447
: Médiane 14.5
: Maximum 23.4
: Minimum 2.8
:
:
#+begin_src python :results file :session "Python"
import matplotlib.pyplot as pyplot
fig, ax = pyplot.plot(données)
fig.savefig('graphe1.png')
'graphe1.png'
#+end_src
#+RESULTS:
[[file:]]
#+begin_src python :results file :session "Python"
fig, ax = pyplot.hist(données)
fig.savefig('graphe2.png')
'graphe2.png'
#+end_src
#+RESULTS:
[[file:]]
......@@ -32,6 +32,7 @@ de la NASA durant les 6 années précédant le lancement de la navette
Challenger.
* Chargement des données
Nous commençons donc par charger ces données:
#+begin_src python :results value :session *python* :exports both
import numpy as np
......@@ -42,30 +43,30 @@ data
#+RESULTS:
#+begin_example
Date Count Temperature Pressure Malfunction
0 4/12/81 6 66 50 0
1 11/12/81 6 70 50 1
2 3/22/82 6 69 50 0
3 11/11/82 6 68 50 0
4 4/04/83 6 67 50 0
5 6/18/82 6 72 50 0
6 8/30/83 6 73 100 0
7 11/28/83 6 70 100 0
8 2/03/84 6 57 200 1
9 4/06/84 6 63 200 1
10 8/30/84 6 70 200 1
11 10/05/84 6 78 200 0
12 11/08/84 6 67 200 0
13 1/24/85 6 53 200 2
14 4/12/85 6 67 200 0
15 4/29/85 6 75 200 0
16 6/17/85 6 70 200 0
17 7/29/85 6 81 200 0
18 8/27/85 6 76 200 0
19 10/03/85 6 79 200 0
20 10/30/85 6 75 200 2
21 11/26/85 6 76 200 0
22 1/12/86 6 58 200 1
Date Count Temperature Pressure Malfunction
0 4/12/81 6 66 50 0
1 11/12/81 6 70 50 1
2 3/22/82 6 69 50 0
3 11/11/82 6 68 50 0
4 4/04/83 6 67 50 0
5 6/18/82 6 72 50 0
6 8/30/83 6 73 100 0
7 11/28/83 6 70 100 0
8 2/03/84 6 57 200 1
9 4/06/84 6 63 200 1
10 8/30/84 6 70 200 1
11 10/05/84 6 78 200 0
12 11/08/84 6 67 200 0
13 1/24/85 6 53 200 2
14 4/12/85 6 67 200 0
15 4/29/85 6 75 200 0
16 6/17/85 6 70 200 0
17 7/29/85 6 81 200 0
18 8/27/85 6 76 200 0
19 10/03/85 6 79 200 0
20 10/30/85 6 75 200 2
21 11/26/85 6 76 200 0
22 1/12/86 6 58 200 1
#+end_example
Le jeu de données nous indique la date de l'essai, le nombre de joints
......@@ -112,7 +113,7 @@ print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:freq_temp_python.png]]
[[file:]]
À première vue, ce n'est pas flagrant mais bon, essayons quand même
d'estimer l'impact de la température $t$ sur la probabilité de
......@@ -142,24 +143,6 @@ logmodel.summary()
#+end_src
#+RESULTS:
#+begin_example
Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: Frequency No. Observations: 7
Model: GLM Df Residuals: 5
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0
Method: IRLS Log-Likelihood: -3.6370
Date: Fri, 20 Jul 2018 Deviance: 3.3763
Time: 16:56:08 Pearson chi2: 0.236
No. Iterations: 5
===============================================================================
coef std err z P>|z| [0.025 0.975]
-------------------------------------------------------------------------------
Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953
Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240
===============================================================================
#+end_example
L'estimateur le plus probable du paramètre de température est 0.0014
et l'erreur standard de cet estimateur est de 0.122, autrement dit on
......@@ -185,7 +168,28 @@ print(matplot_lib_filename)
#+end_src
#+RESULTS:
[[file:proba_estimate_python.png]]
[[file:Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/var/folders/pz/lqbg3sln3tx3lc20qjf3t7580000gn/T/babel-uHWuHe/python-PvRZB8", line 5, in <module>
data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])
NameError: name 'logmodel' is not defined
>>>
]]
[[file:Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/var/folders/pz/lqbg3sln3tx3lc20qjf3t7580000gn/T/babel-uHWuHe/python-kfsyTS", line 5, in <module>
data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])
NameError: name 'logmodel' is not defined
]]
[[file:Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/var/folders/pz/lqbg3sln3tx3lc20qjf3t7580000gn/T/babel-uHWuHe/python-DJFd1z", line 5, in <module>
data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])
NameError: name 'logmodel' is not defined
>>>
]]
Comme on pouvait s'attendre au vu des données initiales, la
température n'a pas d'impact notable sur la probabilité d'échec des
......@@ -201,6 +205,7 @@ print(np.sum(data.Malfunction)/np.sum(data.Count))
#+RESULTS:
: 0.06521739130434782
: >>>
Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe
un joint primaire un joint secondaire sur chacune des trois parties du
......
This diff is collapsed.
module2/exo5/freq_temp_python.png

12.3 KB | W: | H:

module2/exo5/freq_temp_python.png

12.2 KB | W: | H:

module2/exo5/freq_temp_python.png
module2/exo5/freq_temp_python.png
module2/exo5/freq_temp_python.png
module2/exo5/freq_temp_python.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment