3rd attempt

parent e48b9381
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<center>toy_notebook_en</center>\n",
"\n",
"<br>\n",
"<center>March 28, 2019</center>"
]
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -22,8 +12,6 @@
"metadata": {},
"source": [
"## Asking the maths library\n",
"\n",
"\n",
"My computer tells me that $\\pi$ is *approximately*"
]
},
......@@ -49,13 +37,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Buffon’s needle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Buffon’s needle\n",
"Applying the method of [Buffons needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
]
},
......@@ -88,13 +70,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using a surface fraction argument"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1]=\\pi/4$ (see [\"Monte Carlo method\"\n",
"on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment