Update toy_document_orgmode_R_fr.org

parent b170587a
#+TITLE: À propos du calcul de $\pi$
#+TITLE: À propos du calcul de $\pi$
#+LANGUAGE: fr
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
......@@ -11,7 +11,6 @@
#+PROPERTY: header-args :session :exports both
* En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut /approximativement/
#+begin_src R :results output :session *R* :exports both
......@@ -22,7 +21,6 @@ pi
: [1] 3.141593
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait
comme *approximation* :
......@@ -38,9 +36,7 @@ theta = pi/2*runif(N)
: [1] 3.14327
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$
et $Y∼U(0,1)$ alors $P[X2+Y2≤1]=π/4$ (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
#+begin_src R :results output graphics :file figure_pi_mc1.png :exports both :width 600 :height 400 :session *R*
set.seed(42)
......@@ -61,4 +57,4 @@ Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en compta
#+end_src
#+RESULTS:
: [1] 3.156
\ No newline at end of file
: [1] 3.156
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment