resultb

parent 46c71c56
......@@ -301,7 +301,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
......@@ -314,7 +314,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
......@@ -329,7 +329,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -359,7 +359,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"metadata": {},
"outputs": [
{
......@@ -389,7 +389,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
......@@ -400,8 +400,8 @@
" df.dropna(inplace=True) # Supprimer les lignes incomplètes\n",
" df.columns = [\"date\", \"size\", \"bytes\", \"from\", \"url\", \"ip\", \"icmp\",\"ttl\",\"time\", \"ms\"] # Nommez les colonnes\n",
" df[\"time\"] = df[\"time\"].str[5:].astype(float) # Extraire le temps en ms et convertir en float (supprimer la chaîne \"time-\")\n",
" df[\"date\"] = df[\"date\"].str[1:18] # Extraire la date de la première colonne et la convertir au format \"datetime\"\n",
" df[\"date\"] = pd.to_datetime(df[\"date\"], unit='s')\n",
" df[\"date\"] = df[\"date\"].str[1:18] # Les [ ] sont supprimés donc la date est extraite de la première colonne\n",
" df[\"date\"] = pd.to_datetime(df[\"date\"], unit='s') # La date obtenue précédemment est convertie au format \"datetime\"\n",
" return df\n",
"\n",
"# Traiter les données ping pour liglab2 et stackoverflow\n",
......@@ -411,7 +411,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"metadata": {},
"outputs": [
{
......@@ -441,7 +441,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"metadata": {},
"outputs": [
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment