no commit message

parent eefb6009
......@@ -4,36 +4,72 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"toy_notebook_fr\n",
"===============\n",
"\n",
"March 28, 2019\n",
"----------------------\n",
"\n",
"# À propos du calcul de pi\n",
"# À propos du calcul de π\n",
"\n",
"## En demandant à la lib maths\n",
"\n",
"Mon ordinateur m'indique que pi vaut _approximativement_"
"Mon ordinateur m'indique que π vaut _approximativement_"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 8,
"metadata": {},
"outputs": [
{
"ename": "IndentationError",
"evalue": "unexpected indent (<ipython-input-4-26a0cd4a0b18>, line 2)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-4-26a0cd4a0b18>\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m print(pi)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m unexpected indent\n"
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
" print(pi)"
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# En utilisant la méthode des aiguilles de Buffon\n",
"\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"fréquentiel\" de surface\n",
"\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si *X ∼ U*(0, 1) et *Y ∼ U*(0,1) alors *P[X² + Y² ≤ 1] = π/4* (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
]
},
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment