Commit 28ea4a3b authored by Clément Courageux's avatar Clément Courageux

first exo

parent d5f829ad
This diff is collapsed.
#+TITLE: Votre titre
#+AUTHOR: Votre nom
#+DATE: La date du jour
#+TITLE: À propos du calcul de \pi
#+AUTHOR: Clément
#+DATE: 01/04/2020
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
# #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
# #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
* En demandant à la lib maths
Mon ordinateur m'indique que \pi vaut /approximativement/ :
#+begin_src python :session :exports both
from math import *
pi
#+end_src
#+RESULTS:
: 3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme
*approximation* :
#+begin_src python :session :exports both
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src
#+RESULTS:
: 3.128911138923655
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel
à la fonction sinus se base sur le fait que si \(X \sim U(0,1)\) et \(Y \sim U(0,1)\)
alors \(P[X^2+Y^2 \leq1] = \pi/4\) (voir
[[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode
yde Monte Carlo]] sur Wikipedia). Le code suivant illustre ce fait :
#+begin_src python :exports both :session :var matplot_lib_filename="fige.png" :results file
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
matplot_lib_filename
#+end_src
#+RESULTS:
[[file:fige.png]]
Il est alors aisé d'obtenir une approximation (pas terrible) de \pi en comptant
combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1 :
#+begin_src python :results output :session :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
: 3.112
* Quelques explications :noexport:
Ceci est un document org-mode avec quelques exemples de code
python. Une fois ouvert dans emacs, ce document peut aisément être
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment