Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
00457cfdbb94b4c89e4b2ff8b27dc825
mooc-rr
Commits
28ea4a3b
Commit
28ea4a3b
authored
Apr 01, 2020
by
Clément Courageux
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
first exo
parent
d5f829ad
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
452 additions
and
6 deletions
+452
-6
fige.png
module2/exo1/fige.png
+0
-0
toy_document_orgmode_python_fr.html
module2/exo1/toy_document_orgmode_python_fr.html
+381
-0
toy_document_orgmode_python_fr.org
module2/exo1/toy_document_orgmode_python_fr.org
+71
-6
No files found.
module2/exo1/fige.png
0 → 100644
View file @
28ea4a3b
79.4 KB
module2/exo1/toy_document_orgmode_python_fr.html
0 → 100644
View file @
28ea4a3b
This diff is collapsed.
Click to expand it.
module2/exo1/toy_document_orgmode_python_fr.org
View file @
28ea4a3b
#+TITLE:
Votre titre
#+TITLE:
À propos du calcul de \pi
#+AUTHOR:
Votre nom
#+AUTHOR:
Clément
#+DATE:
La date du jour
#+DATE:
01/04/2020
#+LANGUAGE: fr
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#
#
+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#
#
+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Quelques explications
* En demandant à la lib maths
Mon ordinateur m'indique que \pi vaut /approximativement/ :
#+begin_src python :session :exports both
from math import *
pi
#+end_src
#+RESULTS:
: 3.141592653589793
* En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait comme
*approximation* :
#+begin_src python :session :exports both
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src
#+RESULTS:
: 3.128911138923655
* Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel
à la fonction sinus se base sur le fait que si \(X \sim U(0,1)\) et \(Y \sim U(0,1)\)
alors \(P[X^2+Y^2 \leq1] = \pi/4\) (voir
[[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode
yde Monte Carlo]] sur Wikipedia). Le code suivant illustre ce fait :
#+begin_src python :exports both :session :var matplot_lib_filename="fige.png" :results file
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
matplot_lib_filename
#+end_src
#+RESULTS:
[[file:fige.png]]
Il est alors aisé d'obtenir une approximation (pas terrible) de \pi en comptant
combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1 :
#+begin_src python :results output :session :exports both
4*np.mean(accept)
#+end_src
#+RESULTS:
: 3.112
* Quelques explications :noexport:
Ceci est un document org-mode avec quelques exemples de code
Ceci est un document org-mode avec quelques exemples de code
python. Une fois ouvert dans emacs, ce document peut aisément être
python. Une fois ouvert dans emacs, ce document peut aisément être
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment