Update toy_notebook_en.ipynb

parent 994d7c8d
...@@ -2,20 +2,20 @@ ...@@ -2,20 +2,20 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "93d7cca7", "id": "fa916478",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# 1 On the computation of π\n", "# On the computation of $\\pi$\n",
"\n", "\n",
"## 1.1 Asking the maths library\n", "## Asking the maths library\n",
"\n", "\n",
"My computer tells me that π is approximativel" "My computer tells me that $\\pi$ is *approximatively*"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 1,
"id": "d0bc647a", "id": "08c5c563",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -33,18 +33,17 @@ ...@@ -33,18 +33,17 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "99049b47", "id": "8c9199c1",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## 1.2 Buffon’s needle\n", "## Buffon's needle\n",
"\n", "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
"Applying the method of <span style=\"color:blue\"> Buffon’s needle </span>, we get the <b>approximation</b>"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 2,
"id": "d9073c83", "id": "abff8880",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -53,7 +52,7 @@ ...@@ -53,7 +52,7 @@
"3.128911138923655" "3.128911138923655"
] ]
}, },
"execution_count": 3, "execution_count": 2,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -69,18 +68,17 @@ ...@@ -69,18 +68,17 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "2b0f149b", "id": "4bd4c67b",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## 1.3 Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
"A method that is easier to understand and does not make use of the sin function is based on the fact that if X ∼ U(0,1) and Y ∼ U(0,1), then P[X2 +Y2 ≤ 1] = π/4 (see <a style=\"text-decoration: none;\" href=\"https://en.wikipedia.org/wiki/Monte_Carlo_method\"> \"Monte Carlo method\" on Wikipedia </a>). The following code uses this approach:\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 3,
"id": "6b5b21e8", "id": "5413190d",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -97,9 +95,9 @@ ...@@ -97,9 +95,9 @@
} }
], ],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline \n",
"\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
"N = 1000\n", "N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
...@@ -107,6 +105,7 @@ ...@@ -107,6 +105,7 @@
"\n", "\n",
"accept = (x*x+y*y) <= 1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
...@@ -115,16 +114,16 @@ ...@@ -115,16 +114,16 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"id": "ca88818e", "id": "c1e500ca",
"metadata": {}, "metadata": {},
"source": [ "source": [
"It is then straightforward to obtain a (not really good) approximation to π by counting how many times, on average, X2 + Y2 is smaller than 1:" "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 4,
"id": "fe6e57c1", "id": "fc8a2a3e",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -133,7 +132,7 @@ ...@@ -133,7 +132,7 @@
"3.112" "3.112"
] ]
}, },
"execution_count": 5, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment