Mon ordinateur m’indique que $\ π$ vaut _approximativement_
```{r}
```{r}
pi
pi
...
@@ -30,7 +30,7 @@ theta = pi/2*runif(N)
...
@@ -30,7 +30,7 @@ theta = pi/2*runif(N)
## Avec un argument “fréquentiel” de surface
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $\ X∼U(0,1)$ et $\ Y∼U(0,1)$ alors $\ P[X^2+Y^2≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $\X<sup>2</sup>+Y<sup>2</sup>$ est inférieur à 1:
Il est alors aisé d’obtenir une approximation (pas terrible) de $\ π$ en comptant combien de fois, en moyenne, $\ X^2+Y^2$ est inférieur à 1:
Mon ordinateur m’indique que $\ π$ vaut _approximativement_
```{r}
```{r cars}
pi
summary(cars)
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r}
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
```
Et on peut aussi aisément inclure des figures. Par exemple:
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $\ X∼U(0,1)$ et $\ Y∼U(0,1)$ alors $\ P[X^2+Y^2≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```r
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
```
## [1] 3.14327
```
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $\ X∼U(0,1)$ et $\ Y∼U(0,1)$ alors $\ P[X^2+Y^2≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: