Corrección luego de comparación 2

parent ac3e9894
...@@ -7,14 +7,14 @@ ...@@ -7,14 +7,14 @@
"hidePrompt": false "hidePrompt": false
}, },
"source": [ "source": [
"## On the computation of $\\pi$" "# On the computation of $\\pi$"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Asking the maths library\n", "## Asking the maths library\n",
"My computer tells me that $\\pi$ is *approximatively*" "My computer tells me that $\\pi$ is *approximatively*"
] ]
}, },
...@@ -42,13 +42,13 @@ ...@@ -42,13 +42,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Buffon's needle\n", "## Buffon's needle\n",
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -57,7 +57,7 @@ ...@@ -57,7 +57,7 @@
"3.128911138923655" "3.128911138923655"
] ]
}, },
"execution_count": 5, "execution_count": 2,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -75,8 +75,8 @@ ...@@ -75,8 +75,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$ then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
...@@ -98,7 +98,7 @@ ...@@ -98,7 +98,7 @@
} }
], ],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline \n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n", "\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
...@@ -106,7 +106,7 @@ ...@@ -106,7 +106,7 @@
"x = np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"\n", "\n",
"accept = (x*x+y*y) <=1\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n", "reject = np.logical_not(accept)\n",
"\n", "\n",
"fig, ax = plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment