Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
6115f23799e79a0082756425c9fe750d
mooc-rr
Commits
d6dc05cc
You need to sign in or sign up before continuing.
Commit
d6dc05cc
authored
Nov 07, 2023
by
6115f23799e79a0082756425c9fe750d
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
no commit message
parent
89ca6091
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
14 deletions
+25
-14
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+25
-14
No files found.
module2/exo1/toy_notebook_fr.ipynb
View file @
d6dc05cc
...
...
@@ -4,8 +4,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
" \n",
"__1.À propos du calcul de π__\n"
" __1.À propos du calcul de π__ \n",
"__1.1 En demandant à la lib maths__ \n",
"Mon ordinateur m’indique que π vaut approximativement\n"
]
},
{
...
...
@@ -27,11 +28,12 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": []
"source": [
"__1.2 En utilisant la méthode des aiguilles de Buffon__ \n",
"Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :"
]
},
{
"cell_type": "code",
...
...
@@ -59,11 +61,16 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": []
"source": [
"__1.3 Avec un argument \"fréquentiel\" de surface__ \n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X\n",
"2 + Y\n",
"2 ≤ 1] = π/4 (voir\n",
"méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :"
]
},
{
"cell_type": "code",
...
...
@@ -87,11 +94,15 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": []
"source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois,\n",
"en moyenne, X\n",
"2 + Y\n",
"2\n",
"est inférieur à 1 "
]
},
{
"cell_type": "code",
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment