Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r}
set.seed(42)
...
...
@@ -27,11 +26,11 @@ theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
# Avec un argument "fréquentiel" de surface
# Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2 + Y^2 \le 1] = \frac{\pi}{4}$ (voir [méthode de Monte Carlo sur wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo)). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2 + Y^2 \le 1] = \frac{\pi}{4}$ (voir [méthode de Monte Carlo sur wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo)). Le code suivant illustre ce fait: